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Ecosystem restoration aims to restore biodiversity and valuable
functions that have been degraded or lost. The Coral Triangle is a
hotspot for marine biodiversity held in its coral reefs, seagrass
meadows, and mangrove forests, all of which are in global decline.
These coastal ecosystems support valuable fisheries and endangered
species, protect shorelines, and are significant carbon stores, func-
tions that have been degraded by coastal development, destructive
fishing practices, and climate change. Ecosystem restoration is
required to mitigate these damages and losses, but its practice is in
its infancy in the region. Here we demonstrate that species diversity
can set the trajectory of restoration. In a seagrass restoration
experiment in the heart of the Coral Triangle (Sulawesi, Indonesia),
plant survival and coverage increased with the number of species
transplanted. Our results highlight the positive role biodiversity can
play in ecosystem restoration and call for revision of the common
restoration practice of establishing a single target species, particu-
larly in regions having high biodiversity. Coastal ecosystems affect
human well-being in many important ways, and restoration will
become ever more important as conservation efforts cannot keep up
with their loss.
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The exceptional marine biodiversity in the Coral Triangle (1, 2)
provides fisheries resources for more than 350 million humans,

many of whom live in the coastal zone in close proximity to coral
reefs, seagrass meadows, and mangrove forests (3, 4). In addition
to fisheries resources, these coastal ecosystems provide other
valuable ecological services and functions, including coastal de-
fense against flooding; habitat and food for marine species of
conservation concern, such as sharks, dugongs, and sea turtles; and
carbon storage (5–7). These important functions are put at risk as
coral reefs, seagrass meadows, and mangroves decline due to
unrelenting coastal development in the region; fisheries over-
exploitation and destructive practices; and ocean warming and
acidification associated with global climate change (4, 8–12). To
date, conservation efforts have focused primarily on coral reef
fisheries management and establishment of marine protected
areas (10, 13–15). These conservation measures are critically im-
portant, but they do not address mitigation of coastal ecosystems
already degraded or lost; thus, ecosystem restoration is an im-
portant complement to fisheries management and habitat pro-
tection (15). Despite this obvious need, restoration of coral reefs,
seagrass meadows, and mangroves has not advanced very far in
the Coral Triangle (16, 17). Of this ecosystem triad, seagrasses in
particular have been understudied (18–20), despite their impor-
tance for providing food and livelihoods (21, 22). Seagrasses
straddle mangroves lining the shore and coral reefs farther off-
shore, linking these interdependent ecosystems in an integrated
coastal seascape wherein the mangroves and seagrasses intercept
terrestrially derived sediments, nutrients, and pathogens, reducing
their loading on sensitive corals, and provide nursery habitats for
coral reef fisheries species (23–27).
The Coral Triangle hosts more seagrass species than virtually

anywhere else on earth, and across the region they naturally grow

together in mixed species communities (28). We investigated the
role of this biodiversity in ecosystem restoration, which here refers
to the deliberate establishment of a founder community. Bio-
diversity often determines ecosystem function and resilience (29,
30), but its role in restoration is relatively unexplored in both
marine and terrestrial environments (17, 31–35). Species diversity
tends to be a goal, rather than a means, of restoration, although
intraspecific genetic diversity has been examined for seagrass, salt
marsh, and mangrove restoration, which have focused largely on
single species (36–43) (Results).
Planting monocultures in coastal vegetation restoration practice

and research emanated in part from targeting a conspicuous or
“climax” species, the most impacted or stress-tolerant species, or
one desired for silvaculture, even in tropical regions where species
grow intermixed naturally (44–49). Planting monocultures of the
mangrove Rhizophora has led to failed projects (50, 51), yet the
practice has not evolved (52). As part of our study, we confirmed
the pervasive monospecific approach for seagrass, mangroves, and
salt marshes by taking advantage of recent reviews of restoration
practice and research (17, 43, 51, 53) (Results).
The monospecific rationale is understandable, but at odds with

the idea that biodiversity often confers ecological benefits. Species
diversity can enhance ecosystem function and services in estab-
lished (29, 30), but also nascent, communities, as in a seminal study
of a salt marsh restoration (54). Species diversity in the founding
community can set the pace of restoration through negative
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(inhibition, competition) or positive (facilitation) interactions of
one or more species with others, as in succession (55–59).
Concern about both intra- and interspecific competition helped
shape restoration practice in aquatic ecosystems (50, 60–62).
However, facilitative interactions could benefit restoration early
on or in fluctuating or stressful environments (34, 61), as dem-
onstrated intraspecifically for a salt marsh species (62). In-
terspecific facilitation has been proposed to spread predation
risk (52) or hasten colonization of a climax target species, i.e.,
succession could be “compressed” by planting a single nurse or
pioneer species (50, 63–65). However, empirically testing the
effect of species richness on restoration trajectories has
remained a research gap highly relevant to restoration goals and
costs (17, 66) (Results), which is particularly true in the Coral
Triangle where much is at stake environmentally and socially.
To test the effect of seagrass species richness on the restoration

trajectory, we conducted a field experiment using a proven res-
toration technique (67). We transplanted six common Indo-Pacific
seagrass species (Enhalus acoroides, Thalassia hemprichii, Cymo-
docea rotundata, Syringodium isoetifolium, Halodule uninervis,
Halophila ovalis) of ∼15 occurring in the Coral Triangle (28), at
four species richness levels (monocultures, two, four, and five
species). We randomly drew unique species combinations for
replication at the higher richness levels (68) (Fig. 1 A and B and

Tables S1 and S2). To assess differences in early restoration tra-
jectories, we analyzed the survivorship of the initial transplants
and their collective rate of expansion or contraction (percent
cover) for more than a year.

Results
The success of the seagrass transplantations improved with the
number of species planted, indicating that species richness can play
a positive role in restoration. Both survivorship (Fig. 2) and the rate
of change in percent cover (Fig. 3) increased with species richness
(survival: Kruskal–Wallis χ2 = 7.88, P = 0.024, df = 3; percent
cover: GLM, F1,30 = 5.991, P = 0.021), i.e., overyielding occurred
(68–71). We also examined the variability in survival and change in
cover as a measure of stability (72). Although the variances were
homogeneous, i.e., they did not differ across the richness levels
(survival Levene’s F = 0.904, P = 0.452, cover Levene’s F = 1.81,
P = 0.169), the coefficients of variation revealed that monoculture
survival, and possibly cover, was more variable (theoretically less
stable) when contrasted against all mixtures (GLM survival F1,28 =
6.879, P = 0.014; cover F1,28 = 3.055, P = 0.091).
Positive species richness effects are typically attributed at least

statistically to either the random inclusion of a high-performing
species or richness itself through complementation or facilitation
among species, although these mechanisms are not exclusive

Fig. 1. Transplanting seagrasses using SCUBA (A), a mixed-species plot posttransplantation (B) (Enhalus, Cymodocea, Syringodium, Halodule), and distur-
bances of plots by algae (C) and marine debris (D). Photos courtesy of D. Trockel, University of California, Davis, CA (A), J.M.A. (B), C.S. (C), and K. DuBois,
University of California, Davis, CA (D).
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(73–75). In our experiment, partitioning the variance pointed to
the random inclusion of a high-performing species (species iden-
tity, sampling, selection effect, or nontransgressive overyielding),
which necessarily would be in most of the five-species assemblages
(68–71) (ω2; Table 1). AlthoughHalodule uninervis, which attained
the highest mean survival and increase in cover (Figs. 2 and 3 and
Tables S1 and S2), was the most likely candidate for the identity
effect, we detected no differences in survival (Kruskal–Wallis χ2 =
3.68, P = 0.597, df = 5) or the rate of change in cover (F5,10 = 2.41,
P = 0.111) among species grown in monoculture. Despite no
monoculture differences (68), we calculated commonly reported
log response ratios (70, 71) to compare the five-species mixtures to
the average monoculture and to Halodule. These ratios also sup-
ported an identity effect of including Halodule. The five-species
mixtures survived better than the average monoculture (non-
transgressive overyielding, LRmean = 0.0009, two-sided t = 16.576,
P < 0.0001, df = 5) but not better than Halodule (transgressive
overyielding, LRmax = −0.0002, two-sided t = −4.00, P = 0.010,
df = 5; Tables S1 and S2). The cover in the five-species mixtures
increased faster than the average monoculture (LRmean = 0.034,
two-sided t = 3.436, P = 0.019, df = 5) but not faster thanHalodule
(LRmax = −0.026, two-sided t = −2.645, P = 0.046, df = 5). Neither
Halodule nor any other species took over the mixtures, just as they
naturally grow together (28) (Tables S3 and S4). Having replicated
each unique assemblage, we contrasted changes in cover with and
without Halodule among all mixtures or only the four- plus five-
species mixtures and were unable to document differences (Tables
S3 and S4). Altogether, the results could indicate a possible
richness effect not captured by some of the statistics (68, 73–75).
Our experiment contrasts strongly with much restoration-

oriented practice and research. Restoration databases (17, 42,
51, 53) confirmed our collective experience that monocultures are
the norm in both restoration practice and research (Dataset S1).

Of 253 seagrass, mangrove, and salt marsh studies, we identified
71 (28%) in which multiple species were actually planted in the
field. Most of the rest were temperate studies where seagrass and
salt marsh species effectively form monocultures. Of the 71 ap-
plicable studies, 30 (42%) reported planting species in mixtures in
at least some part of the study. Seagrass species were mixed in only
five of 29 studies (17%). Nineteen of 36 mangrove studies (53%)
included species mixtures; however, Rhizophora composed 97% of
the mixtures in 10 of these studies (51). Of the six applicable salt
marsh studies of 42 total, species were planted in mixtures but the
species richness effect was tested in only one (54, 76). Across
systems, species richness was not a factor in the design of nearly all
of the multispecies plantings (Dataset S1).

Discussion
Establishing a diverse founder community holds promise for en-
hancing restoration of seagrasses, where efforts have focused
largely on a single species (48, 49), and coastal vegetation in
general (Dataset S1). The mechanisms underlying the seagrass
diversity effect are hypothetical, because supporting evidence in
the form of ω2, log ratios, and the like are merely statistical proxies
for the ecological interactions occurring among species (68–75).
We found evidence for and against Halodule uninervis as driving
better performance in the mixtures. Although ω2 points to Hal-
odule, we could not document differences between mixtures with
or without it, or among monocultures, and it did not dominate the
plots or the naturally diverse bed (Tables S3 and S4).
Ecologically, facilitative interactions and niche partitioning to

reduce competition could have been operating as the seagrasses
established and grew, along with identity (selection) effects (73–
75). Early facilitation followed by niche partitioning and con-
tinued coexistence is reasonable given the diverse morphologies

Fig. 2. Species richness and restoration trajectories: survivorship increased with
species richness (χ2 = 7.88, P = 0.024, df = 3). Mean, SE bars, n = 6 monocultures
and five-species combinations, n = 10 two- and four-species mixtures; n =
32 assemblages. Individual species did not differ (χ2 = 3.68, P = 0.597, df = 5),
mean and SE bars, n = 2–4.

Fig. 3. Species richness and restoration trajectories: rate of change in percent
cover increased with species richness (F1,30 = 5.99, P = 0.021). Mean, SE bars,
n = 6 monocultures and five-species combinations, n = 10 two- and four-
species mixtures; n = 32 assemblages. Individual species did not differ (F5,10 =
0.894, P = 0.521), mean and SE bars, n = 2–4.
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and growth strategies within Indo-Pacific seagrasses (77, 78). For
example, small, shallow-rooted species (e.g., Halodule uninervis,
Halophila ovalis) colonize quickly and stabilize sediments,
allowing nutrient pools to build by minimizing resuspension, thus
facilitating succession (58, 79, 80). These species can then coexist
within canopies of taller, slow-growing species such as Enhalus
acoroides, which has roots extending ≥20 cm into the sediments.
By layering their roots (79), seagrasses can partition sediment
nutrients (58), thus alleviating competition as density increases.
Taller canopies shade and potentially reduce photoinhibition to
facilitate smaller, more-sensitive species (81). Mixtures of mor-
phologically different species perhaps stabilize sediments and
prevent uprooting and nutrient release better than single species
(58, 82). Thus, mixtures could more fully utilize nutrients and
light, leading to enhanced overall seagrass production (77) and
potentially to higher animal diversity (83–85). This scenario is in
line with the positive biodiversity effects demonstrated in many
studies (29, 30, 68–71), and could imply that multispecies res-
toration efforts might perform better based not only on plant
survival and cover but also on the ecosystem functions they
provide (e.g., stabilizing sediments).
Regardless of the mechanisms for its effect, species richness

clearly had a positive influence on the restoration trajectory (Figs. 2
and 3). Understanding the biological basis for the richness effect
requires going beyond the statistical indicators and investigating the
potential mechanism(s) proposed above. Without detailed mecha-
nistic information, there is good reason to include multiple species
in restorations of diverse communities when the best-performing
species cannot be definitively identified, as in this study, and par-
ticularly in tropical regions where species coexist naturally.
Diverse transplantations certainly did better, but overall survival

was low and cover increased slowly, which is typical in seagrass
restorations and highlights a critical restoration issue (43). Small
chronic disturbances to our plots, which were close to an inhabited
shoreline, undoubtedly contributed to a slow restoration trajec-
tory. The plots suffered from boat traffic and anchoring, tram-
pling, mariculture installations, smothering by marine debris and
sediments, and algal overgrowth, presumably stimulated by sewage
inputs in the absence of a sanitation system on the island (Fig. 1 C
and D). However, transplants were not destructively cropped by
herbivores; sea urchins were almost absent from our study site,
and we observed herbivorous fishes feeding primarily on algal
epiphytes and less directly on seagrasses. Anthropogenic distur-
bances to seagrasses are not unique to Coral Triangle locales (6,
11, 12, 17, 19, 23, 28, 43), but the attention and resources to ad-
dress them lag behind coral reef and mangrove conservation and
management efforts (4, 18–20). Managing human disturbances in
the Coral Triangle clearly will be necessary for the ultimate suc-
cess of restoration, but meanwhile a speciose founding community
offers good results in the face of such disturbances. It could very
well be that the species richness effect is most evident in disturbed

habitats, but verification awaits experiments deployed across a
disturbance gradient.
Given the exceptional biodiversity in the Coral Triangle (1, 2)

and the grave threats to its coastal ecosystems and human de-
pendence on them (3, 4, 8, 9, 21, 22), it is imperative to begin
restoration efforts in earnest to complement the existing focus on
fisheries management and habitat conservation (12–15), recon-
nect broken linkages in the seascape (24–27), and capture and
store carbon (86). Diverse founding communities can accelerate
the pace of seagrass restoration, a finding that should also be
tested explicitly in other ecosystems (17, 51, 53) (Dataset S1).
Biodiversity is not only critical to ocean-dependent peoples, but
in itself provides a means to enhance restoration results.

Methods
Transplantation Design. We cut standardized seagrass transplants (15-cm
rhizomes with terminal meristem, roots, and leaf shoots) of Enhalus acoroides,
Thalassia hemprichii, Cymodocea rotundata, Syringodium isoetifolium, Halodule
uninervis, and Halophila ovalis. We randomly drew unique assemblages at
each richness level to control for species composition bias (68), yielding
n = 6 monoculture treatments, n = 10 for two- and four-species, and n =
6 for five-species treatments (all possible combinations). We randomly
assigned richness treatments to plots (60 × 60 cm, divided into 16 equal
grids) separated by at least 1 m in which total transplant density (n = 16) was
constant across treatments and the number of transplants of each species
was equal within a plot. We standardized transplants by rhizome length and
meristem, as done in restoration practice; therefore, biomass differences
across species were part of random experimental error. Each monoculture
and unique species combination was replicated (n = 3) except for the following
replication errors during transplantation: Halodule (n = 2 plots), Halophila
(n = 4), Cymodocea plus Halophila (n = 2), Syringodium plus Halophila (n = 4)
(Tables S1 and S2). We anchored transplants in plots (n = 96) in unvegetated
sediments in 2- to 3-m water depth within a seagrass bed growing behind the
barrier reef on Pulau Badi (S 5°2′44.9–5°3′0.53′′, E 119°19′42.38′′–119°19′49.17′′),
Spermonde Islands, South Sulawesi, Indonesia.

Our site was a typical Indonesian small island where inhabitants maintained
traditional lifestyles and used the seagrass meadow for various purposes, in-
cluding artisanal fishing, mariculture, anchorage, swimming, bathing, and
waste disposal, including human. Our plots followed the seaward edge of the
meadow where it abuts the reef at ∼50 m from shore. We engaged the
community with outreach about seagrasses and our experiment.

We monitored plots every 2 wk for the first 4 mo and then every 4 wk for a
total of 19 times over 57 wk. We estimated survival as the proportion of the
original transplants (n = 16) that were alive in each plot at each census. We
estimated percent cover by taking a photograph from 1 m above each plot
and summing the percent cover in 320 equal-sized subdivisions. Plots invaded
by other species or lost were deleted from analyses, leaving n = 87 to analyze.
Because rates of change encompass variation due to seasons, storms, and
other disturbances, our analyses differ from biodiversity experiments that test
effects at a single point typically at the end of an experiment, which might
misrepresent the overall trajectory.

Data Analysis. Survival of the initial transplants declined exponentially (a
typical survivorship curve), and we estimated survivorship as the slope of log
(survival + 1) vs. time for each plot (average R2 = 0.81 ± 0.15 SD, n =
87 plots). We averaged the slopes of replicate plots (n = 2–4; see above)
within each unique species assemblage (n = 32 monocultures and poly-
cultures). The mean was used as the response variable in the nonparametric
Kruskal–Wallis test for species richness effects (four levels) after transfor-
mations did not meet parametric assumptions (examination of residuals,
normal Q-Q, and log-likelihood plots using R 3.0.1). Mean slopes of linear
regressions of percent cover vs. time were also tested but in a general linear
model; linear regressions were the best-fit function (higher R2 compared
with exponential functions except for a few plots). We compared species
survivorship and changes in percent cover in monocultures using Kruskal–
Wallis tests and within and among species using ANOVA (after examining
residual plots using SYSTAT 11), respectively (68). We used Levene’s test for
homogeneity of variances and tested differences in coefficients of variation
between all monocultures and all mixtures in a general linear model.

To assess whether the positive relationship between species richness and
percent cover (overyielding) was likely due to species richness itself (diversity
effect) or inclusion of a high-performing species in themixtures (identity effect),
we partitioned the total variance into the two effects (ω2) by performing

Table 1. Seagrass species diversity vs. identity effect sizes (ω2)

Effect SS df MS P ω2 η2 R2

Model 0.0873 86 0.0028 0.0067 0.2892 1.000 0.550
Diversity 0.0013 1 0.0873 0.0001 0.0002 0.008
Identity 0.0860 30 0.0029 0.0061 0.2890 0.539
Error 0.0723 55 0.0013 0.453
Total 0.1596

Partitioning of variance into species diversity and identity effects (effect
size ω2) on changes in percent seagrass cover for 32 unique replicated species
assemblages (Table S2). Effects of species richness vs. identity on changes in
percent seagrass cover over time (linear regression coefficients) were parti-
tioned through orthogonal planned contrasts of mixed species vs. single
species (69). η2 is the proportion of the total variance attributable to each
effect, R2 is proportion of the variance explained by the model.
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contrasts between the poly- and monocultures to yield the diversity effect,
which then yields the identity effect when subtracted from the total sum of
squares (69) (Table 1). Because ANOVA was inappropriate for survivorship, we
could not partition the variance. We also calculated log response ratios as a
commonly reported test of species richness effects (70, 71), acknowledging the
challenge of ascribing mechanisms to overyielding effects (68, 73–75). These
ratios compare species mixtures to species grown alone (monocultures). The
nontransgressive overyielding log ratios, LRmean, were calculated as the natural
log of the ratios of the mean of replicate plots for each unique five-species
mixture (n = 6) to the mean of all monocultures calculated from the average of
the replicate plots for each species (Tables S1 and S2). The transgressive over-
yielding log ratios, LRmax, were similarly calculated based on the averages of
replicated plots of each unique five-species combination (n = 6) divided by the
mean of the highest-performing species in monoculture (Halodule uninervis).
We performed two-sided t tests (df = 5) to assess whether LRmean and LRmax

were different from zero. All data are provided in Supporting Information.
To assess multispecies approaches in seagrass, mangrove, and salt marsh

restoration projects and experiments, we considered four restoration supple-
mental databases formangroves, seagrass, and saltmarshes (17), seagrasses (43),
mangroves (51), and all ecosystems (53). After excluding freshwater and

terrestrial studies (53), we culled all studies that potentially included >1 species.
After reading all papers from this subset, we selected the applicable studies
that provided information on transplantations or sowings in field restoration
projects or experiments where the natural vegetation comprises multiple
species (primarily tropical regions) and deleted those that did not, e.g., ones
on natural recolonization, economic analyses, and general review papers
without planting details. From the applicable papers, we calculated the per-
centage in which >1 species were actually planted mixed together in the field
in at least some part of the study (Dataset S1).
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